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Abstract This article is devoted to the characterization of the basin of attraction of

pattern solutions for some slow–fast reaction–diffusion systems with a symmetric

property and an underlying oscillatory reaction part. We characterize some subsets

of initial conditions that prevent the dynamical system to evolve asymptotically

toward solutions which are homogeneous in space. We also perform numerical

simulations that illustrate theoretical results and give rise to symmetric and non-

symmetric pattern solutions. We obtain these last solutions by choosing particular

random initial conditions.

Keywords Reaction diffusion systems � Slow–fast analysis � Limit-cycles � Pattern

formation � FitzHugh–Nagumo

1 Introduction

Pattern formation arises naturally in widely applications such as chemistry, fluid

mechanics, bacteria development, morphogenesis, animals coats designs, visual

hallucinations. Among the mathematical models that allow pattern formation,

reaction–diffusion (RD) models are quite relevant. Recall that RD systems are

partial differential equations with the following form:

Ut ¼ FðUÞ þ KDU:

Let us recall some striking biological examples of pattern formation whose behavior

has been successfully modeled by RD systems. The most famous chemical example

is certainly the Belousov–Zhabotinsky family of chemical reactions. A mix of a
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solution of sodium bromate and sulfuric acid and a solution of malonic acid sodium

bromure, with a few drops of ferroin, in adequate proportions, will oscillate between

red and blue color. If the same kind of mixture lies on a petri dish, one can observe

target or spiral pattern formation. Other patterns such as Turing structures or

standing waves have also been observed in Belousov–Zhabotinsky chemical reac-

tion types, see Epstein and Showalter (1996), Mikhailov and Showalter (2006),

Taylor (2002), Winfree (2006), Zhabotinsky (2007). Bacteria development also

furnishes striking examples of patterns. In this context, RD systems have been

successfully used to obtain diffusion-limited aggregation-like, Eden-like, concentric

ring-like, disk-like and dense branching morphology-like patterns for the bacteria

Bacillus Subtilis development, see Lacasta et al. (1999), Matsushita et al. (1998),

Mimura et al. (2000). Dictyostellium Discodeum amoeba, in condition of starvation

also exhibits spectacular patterns that have been modelled by RD systems, see

Halloy et al. (1998), Lauzeral et al. (1997). In physiological context, spiral or target

patterns can be found in excitable or oscillatory cells such as cardiac tissue or brain,

see Murray (2010). A well known example of pattern formation in this area is the

appearance of visual patterns related to drug induced hallucinations. A mathemat-

ical modeling approach has been developed for that, see Ermentrout and Cowan

(1979), Golubitsky et al. (2004) and references therein cited. The first mathematical

well-known analysis came with the seminal work of Turing (1952), in which a two-

component RD system is proposed to explain the morphogenesis. Mathematically,

the phenomenon known as Turing mechanism occurs when the diffusion-less sys-

tem possesses a stable stationary solution and the diffusion term turns the stationary

point unstable, leading to stable pattern solutions. The mathematical technique,

largely used, consists then on exhibiting sufficient conditions in order to obtain

positive eigenvalues for the Jacobian at the steady state, see for example Murray

(2010). Analogously, one can obtain stable patterns if the underlying ODE system

possesses a bistability property. When the underlying ODE is either excitable or

oscillatory, wave propagation may occur that eventually results on pattern forma-

tion. In the context of excitable media, wave propagation results from the diffusion

term: the excitation wave may propagate trough excitation of neighbors. Notice that

this idea already appears in the early works of Rashevsky, see (Rashevsky

1933a, b, 1937). In the case of oscillatory media the wave propagation results from a

shift in oscillations regarding to the space location. Note that symmetry plays a key

role in pattern formation. This idea was already found in Turing (1952). Since this

pioneering work, an important and interesting theory has been developed to study

the role of symmetry in dynamical systems, see Golubitsky and Stewart (2002).

Among all these cases where RD systems may lead to pattern formation, we focus

on the following one: RD systems with two equations and a symmetric oscillatory

reaction term. We focus on the characterization of the basin of attraction of special

patterns for reaction–diffusion systems whose underlying ODE reaction system has

the following property: the unique fixed point is the origin and any solution starting

at a value distinct from the origin evolves asymptotically around a unique limit

cycle. We will also assume that, the ODE has a symmetry property, for example if

U(t) is a solution, �UðtÞ also is a solution. Such a typical ODE system is given by

the following FitzHugh–Nagumo equations:
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�ut ¼ f ðuÞ � v

vt ¼ u� dv

�
ð1Þ

where f ðuÞ ¼ �u3 þ 3u, � is small parameter, and d not to large in order to ensure

the existence of a unique fixed point. Let us recall that the FitzHugh–Nagumo

system is a simplification of the Hodgkin–Huxley model which can exhibit oscil-

latory or excitable behavior. In this system, the variable u represents the cellular

electric potential while the variable v is a recovery variable, see Ambrosio and Aziz-

Alaoui (2012), FitzHugh (1961), Françoise (2005), Hodgkin and Huxley (1952),

Nagumo et al. (1962). In the case studied here, it is oscillatory. This is a slow–fast

system. The slow manifold is given by the equation v ¼ f ðuÞ. There are two

attractive parts in this manifold which correspond to juj[ 1. The Fig. 1 illustrates

the asymptotic dynamics of system (1).

Throughout this paper, we deal with the following RD system:

�ut ¼ f ðuÞ � vþ duDu

vt ¼ u� dvþ dvDv

�
ð2Þ

with f ðuÞ ¼ �u3 þ 3u, � small, d not to large, du [ 0; dv � 0 and Neumann

Boundary conditions (NBC), even though theoretical results remain valid for sys-

tems with analog properties. We are interested in the characterization of the basin of

attraction of (2). More precisely, we know that the system generates a semi-group

and possesses a global attractor in L2ðXÞ � L2ðXÞ and a bound in L1ðXÞ � L1ðXÞ,
see for example Ambrosio et al. (2015), Ambrosio and Françoise (2009), Marion

(1989). Note that other frameworks are possible such as classical and Holder

function spaces, see Rothe (1984). Among the solutions lying in the attractor, some

Fig. 1 Asypmtotic behavior of solutions of system (1). Any solution starting at a point distinct from the
origin evolves asymptotically toward a unique limit-cycle. In red we represent a solution. In green, we
represent the cubic null-cline corresponding to the first equation while in blue we represent the linear null-
cline corresponding to the second equation. Note that, due to the �, there is two time scales. The solution
reaches rapidly a region near the slow manifold, and then evolve slowly therein. (Color figure online)
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are well-known: those constant in space and belonging to the attractor of (1). If we

choose initial conditions of (2), ðu0ðxÞ; v0ðxÞÞ constant in space, and if (u, v) is a

solution of (2), then for all fixed x 2 X, [u(x, t), v(x, t)] is a solution of (1) which

evolve asymptotically toward the limit-cycle as soon as ½u0ðxÞ; v0ðxÞ� 6¼ ð0; 0Þ:
Numerical simulations show that most of initial conditions evolve asymptotically

toward this solution. In the case where,

kdu [ 3; ð3Þ

where k is the smallest non-zero eigenvalue of �D with NBC, all the solutions

evolve asymptotically towards space homogeneous solutions, that is, toward the

limit cycle of (1) or toward (0, 0), see Ambrosio and Aziz-Alaoui (2012, 2013),

Conway et al. (1978).

A question naturally arises: when (3) is not fulfilled, are we able to characterize

the initial conditions that will not evolve toward homogeneous space solutions?

The aim of this article is to discuss this question and furnish some theoretical and

numerical elements of response. Indeed, the article is divided in four sections as

follows. After the present introduction, we enunciate in the second section, two

propositions that give insights on the characterization of the slow-manifold for (2)

written around the limit-cycle of (1), and the behavior within this manifold. In the

third section, we state sufficient conditions ensuring an asymptotic non-homogeneous

space behavior [or maybe evolution toward (0, 0)]. Thus we characterize elements of

the basin of attraction of functions of the the attractor distinct from the limit-cycle of

(1). For this we use the symmetry of the Eq. (2): if (u, v) is a solution, also �ðu; vÞ is.

Besides, we consider symmetric domains. Indeed, we are able to choose appropriate

initial conditions, leading to null integrals
R
X udx and

R
X vdx. Therefore, this prevents

the solution to evolve toward the limit cycle of (1). In the fourth section, we perform

numerical simulations. We illustrate some applications of the theoretical results of the

third part and also exhibit numerically other initial conditions that evolve

asymptotically to non-homogeneous space solutions (Figs. 2–12). To this aim, we

choose initial conditions distributed along stochastic laws with null expectancy and

show numerical evidence that this lead to asymptotically non-homogeneous space

solutions with no apparent symmetry (Figs. 9–12).

Throughout the paper, we denote by ð~u; ~vÞ the periodic solution of (1).

2 The Slow Manifold of (2) Written Around ð ~
u; ~vÞ

In this section we give two propositions giving insights on the existence of the

manifold, when we write (2) around ð~u; ~vÞ, and on the behaviour within this

manifold. System (2) around ð~u; ~vÞ reads as:

�ut ¼ f 0ð~uÞuþ f 00ð~uÞ
2

u2 � u3 � vþ duDu

vt ¼ u� dvþ dvDv

8<
: ð4Þ

A classical approach to study ODE’s with an � in front of some derivatives, is the

geometrical singular perturbation theory (GSPT). By a change of time coordinate
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t ¼ �s, we obtain an equivalent system. The main idea of the GSPT is to set � ¼ 0 in

the two equivalent systems and to study the two resulting systems: the layer system

and the reduced system, see for example Desroches et al. (2012), Krupa et al.

(2014), Kuehn (2015) and references there in cited for a review.

This is what we do know but for the RD system (4). The layer system reads as,

ut ¼ f 0ð~uð0ÞÞuþ f 00ð~uð0ÞÞ
2

u2 � u3 � vþ duDu

vt ¼ 0

8<
: ð5Þ

while the reduced system reads as,

0 ¼ f 0ð~uðtÞÞuþ f 00ð~uðtÞÞ
2

u2 � u3 � vþ duDu

vt ¼ u� dvþ dvDv

8<
: ð6Þ

We start with the first proposition which states the existence and the local

uniqueness of a slow attractive manifold. In our case this leads to an elliptic

equation. Let us consider the general equation:

ut ¼ gðuÞ � vþ duDu: ð7Þ

We have:

Proposition 1 Let X ¼ C0ð �XÞendowed with the norm jjf jj ¼ supx2 �X jf ðxÞj. We

assume that g 2 C1ðRÞis such that gð0Þ ¼ 0 and g0ð0Þ\0, then for ||v|| small

enough and u0 2 X \ C2ð �XÞ such that jju0jj small enough the solution u of (7)

evolves towards the (locally) unique stationary solution of (7) in X.

Proof The proof basically relies on maximum principles, see Protter and

Weinberger (1984). We give here a direct proof. Since g0ð0Þ\0, g is locally

decreasing in a closed interval I containing 0, for ||v|| small enough, we can find u0

and two constant values a and b 2 I such that a\u0ðxÞ\b, with:

gðbÞ\vðxÞ\gðaÞ

and g0ðxÞ\0 in [a, b]. This means that a is sub-solution and b an upper-solution of

(7), see for example Smoller (1994). Let us denote by uaðx; tÞ the solution of (7)

with uaðx; 0Þ ¼ a, then for all t[ 0, a\ua\b. Indeed, if ua reaches b for the first

time, Eq. (7) leads to 0� o
ot
ua ¼ gðbÞ � vþ duDua\0, which is not possible.

Analogously, since o
ot
uaðx; 0Þ ¼ gðaÞ � v[ 0, ua is greater than a for t small

enough. Therefore, if ua reaches a for the first time, we have 0� o
ot
ua ¼

gðaÞ � vþ duDua [ 0 which is not possible. Therefore, for all t[ 0, a\ua\b.

Note that this result remains valid for any solution satisfying a� u0 � b, however

we focus for the moment on the solution with u0 ¼ a. We set w ¼ o
ot
ua. Then

wt ¼ g0ðuaÞwþ duDw; ð8Þ

and
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w0 ¼ gðaÞ � v[ 0:

By analog arguments we can prove that w� 0 (consider the first time for which w

reaches a negative value). We prove that in fact, w[ 0 and we give an uniform

bound, depending only on time. Let lm ¼ minx2½a;b� g
0ðxÞ and lM ¼ maxx2½a;b� g

0ðxÞ.
We have lm\lM\0. Let w the solution of wt ¼ lmw with w0 ¼ infx2½a;b� w0. Then

we have

wt � lmwþ duDw;

and therefore,

ðw� wÞt � lmðw� wÞ þ duDðw� wÞ:

Hence w� w� 0, which means:

o

ot
ua �w0e

lmt:

Using the same arguments, we show that o
ot
ua ¼ w converges uniformly toward 0.

Let ub the solution of (7) with uð0Þ ¼ b, ub converges uniformly to a continuous

function. By analog comparison arguments we show that ub � ua converges uni-

formly toward 0. Indeed, let h ¼ ub � ua, we have,

ht ¼ g0ðhÞhþ duDh

with hðx; tÞ 2�a; b½. We have h� 0. Let �h solution of ht ¼ lMh with �h0 ¼
maxx2 �Xðub � uaÞ and h solution of ht ¼ lmh with h0 ¼ minx2 �Xðub � uaÞ. Then,

ht � lMhþ duDh;

and

ð�h� htÞ� lMð�h� hÞ þ duDð�h� hÞ:

Also,

ðh� hÞt � lmðh� hÞ þ duDðh� hÞ:

Therefore,

h0e
lmt � h� �h0e

lMt:

It follows that h converges uniformly toward 0. Therefore, ua and ub converge

uniformly toward a function, let’s say u�. Now, we show that u� is a solution of

gðbÞ � vþ duDu ¼ 0. As o
ot
ua converges uniformly toward 0, we have

gðu�Þ � vþ duDu
� ¼ 0: ð9Þ

Also, as o
ot
ua and gðuaÞ converge uniformly, this implies that Dua converges uni-

formly. The same arguments are valid to show that any solution of (7), starting with
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u0 2 ½a; b�, converges uniformly toward a solution of (9). For the uniqueness, let u1

and u2 two solutions of the stationary equation belonging to the interval [a, b].

Then:

g0ðhÞðu1 � u2Þ þ duDðu1 � u2Þ ¼ 0:

Integrating by parts (or by a maximum principle) leads to u1 � u2 ¼ 0. h

The proposition 2 gives the qualitative behavior on the attractive part of

the slow manifold. More precisely, let gðt; uÞ ¼ f 0ð~uðtÞÞuþ f 00ð~uðtÞÞ
2

u2 � u3 ¼
3ð1 � ~u2Þu� 3~uu2 � u3. The sufficient assumption in the proposition is that

gðt; uÞu� 0 which is verified as long as ð~u; ~vÞ and (u, v) remain in the attractive

parts of the cubic. Then the proposition states that the reduced system decreases

exponentially in norm L2. Let v(x, t) a solution of (6).

Proposition 2 Let I ¼ ½t0; t1� such for all t 2 I; gðt; uÞu� 0. Then for all t 2 ½t0; t1�,
we have Z

X
v2ðx; tÞdx� e�dðt�t0Þ

Z
X
v2ðx; 0Þdx

Proof We multiply the second Eq. (6) by v and integrate over X, we obtain:

d

dt

Z
X
v2ðx; tÞdx ¼ 2

Z
X
uvdx� d

Z
X
v2dxþ

Z
X
vDvdx

� �
:

Now, multiplying the first Eq. (6) by u and integrating over X, we obtain,Z
X
uvdx ¼

Z
X
gðt; uÞudxþ

Z
X
uduDudx:

Therefore, using green formula, we obtain:

d

dt

Z
X
v2ðx; tÞdx� � 2d

Z
X
v2dx:

Multiplying by e2dt and integrating, we obtain the result. h

3 A Condition for Evolution Toward Patterns

The following theorem exhibits initial conditions that prevent the solution of (2) to

evolve toward ð~u; ~vÞ.

Theorem 1 Assume that we can divide the domain into a partition X ¼
ð[i2f1;:::;lgUiÞ [ ð[i2f1;:::;lgViÞ such that for i 2 f1; :::; lg there exists a diffeomorphism
/i fromUi to Vi with j det J/i

j ¼ 1, where J is the jacobian, and initial conditions, such

that for all x 2 [i2f1;:::;lgUiÞ and for all t 2 Rþ; ðuð/iðxÞ; tÞ; vð/iðxÞ; tÞÞ ¼
�ðuðx; tÞ; vðx; tÞÞ then the solution of (2) can not evolve asymptotically toward ð~u; ~vÞ:
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Proof If the hypothesis of Theorem 1 is satisfied then, for all t[ 0:

Z
X
uðx; tÞdx ¼

Xl

i¼1

Z
Ui

uðx; tÞdxþ
Xl

i¼1

Z
Vi

uðx; tÞdx

¼
Xl

i¼1

Z
Ui

uðx; tÞdxþ
Xl

i¼1

Z
Ui

uð/iðxÞ; tÞj det J/i
jdx

¼
Xl

i¼1

Z
Ui

uðx; tÞdx�
Xl

i¼1

Z
Ui

uðx; tÞdx

¼ 0:

The result is valid for
R
X vðx; tÞdx. And we know that for all t:

Z
X
ð~uðtÞ; ~vðtÞÞ 6¼ ð0; 0Þ:

h

The two following corollaries give examples of situations where Theorem 1

applies.

Corollary 1 Assume that the domain X has (0, 0) for symmetry center and that for

all x ¼ ðx1; x2Þ 2 X; ðu0; v0ÞðxÞ ¼ �ðu0; v0Þð�xÞ then for all t[ 0 and for all

x 2 X; ðu; vÞðx; tÞ ¼ �ðu; vÞð�x; tÞ. Then the solution of (2) cannot evolve asymp-

totically toward ð~u; ~vÞ:

Proof This follows from symmetry, and the property that ðf ð�uÞ þ v;�uþ dvÞ ¼
�ðf ðuÞ � v; u� dvÞ. h

Corollary 2 Suppose that the domain X has ðx1; 0Þ as a symmetry axis and that for
all x ¼ ðx1; x2Þ 2 X; ðu0; v0Þðx1; x2Þ ¼ �ðu0; v0Þðx1;�x2Þ, then for all t[ 0 and for

all x 2 X;ðu; vÞðx1; x2; tÞ ¼ �ðu; vÞðx1;�x2; tÞ. It follows that the solution of (2)

cannot evolve asymptotically toward ð~u; ~vÞ:

Proof This follows from analog arguments of symmetry. h

4 Numerical Simulations

In this section we present numerical simulations of (2) leading to pattern

formation (Figs. 2–12). We use a C þþ program with a finite-difference

scheme in space and RK4 in time. We choose a time step dt ¼ 0:01 on the

intervall [0, 200] and a space step h ¼ 1 on the square domain ½0; 100� � ½0; 100�.
Also, we choose du ¼ 1; dv ¼ 0; � ¼ 0:1; d ¼ 0:2. Numerical simulations are

shown in figures above.
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Fig. 2 In the left panel we show initial conditions leading to spiral asymptotic behavior for (2). We
choose ðu0ðxÞ; v0ðxÞÞ ¼ ð1; 0Þ on the quarter left-up square, ðu0ðxÞ; v0ðxÞÞ ¼ ð0; 1Þ on the quarter right-
up square, ðu0ðxÞ; v0ðxÞÞ ¼ ð0;�1Þ on the quarter left-down square and ðu0ðxÞ; v0ðxÞÞ ¼ ð�1; 0Þ on the
quarter right-down square. In the right panel, we show the isovalues of uðx1; x2; 0:1Þ

Fig. 3 This figure shows the asymptotical evolution of a solution of (2). More precisely, it represents the
isovalues of uðx1; x2; tÞ for time t ¼ 190. It is obtained by choosing ðu0ðxÞ; v0ðxÞÞ ¼ ð1; 0Þ on the quarter
left-up square, ðu0ðxÞ; v0ðxÞÞ ¼ ð0; 1Þ on the quarter right-up square, ðu0ðxÞ; v0ðxÞÞ ¼ ð0;�1Þ on the
quarter left-down square and ðu0ðxÞ; v0ðxÞÞ ¼ ð�1; 0Þ on the quarter right-down square. See Fig. 2. This
illustrates an asymptotic non homogeneous space behavior of a spiral type. It is an application of the
Corollary 1
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Fig. 4 This figure shows the asymptotic evolution of a solution of (2) at some space points. Indeed, the
green line represents uðx1; x2; tÞ for ðx1; x2Þ ¼ ð50; 50Þ, for time t 2 ½180; 200�. The red line represents

uðx1; x2; tÞ for ðx1; x2Þ ¼ ð50; 100Þ, for time t 2 ½180; 200�. Finally, the blue line represents
R
X uðx; tÞdx,

which is zero as predicted by the theory. It is obtained by choosing the same initial conditions as in Fig. 3.
This illustrates an asymptotic non homogeneous space behavior. For each x 2 X the trajectory evolves
asymptotically around limit cycles of same period, the patterns observed result from a phase shift. (Color
figure online)

Fig. 5 This figure shows the asymptotic evolution of a solution of (2). It represents uðx1; x2; tÞ for time
t ¼ 190. It is obtained by reproducing four times the initial conditions of Fig. 3 by axial symmetry. More
precisely, we reproduce the initial conditions of Fig. 3 in the upper-left quarter square. Then, we operate
an axial symmetry of axis ðx1; 50Þ to obtain the initial conditions on the quarter down-left square, and an
axial symmetry of axis ð50; x2Þ to obtain the initial conditions on the upper-right quarter square. Finally,
we choose initial conditions on the down-right quarter by central symmetry of the upper-left or
equivalently by axial symmetry of the upper-right or down-left quarter square. Then, we obtain four
spirals. By the way, we can show by symmetry that choosing such initial conditions, implies that the
solution on the upper-left quarter verify (2) with NBC. Then, it comes from symmetry that we obtain four
times the same patterns. We can repeat this procedure as many times as needed
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Fig. 6 This figure shows the asymptotic evolution of a solution of (2) at some space points. Indeed, the
green line represents uðx1; x2; tÞ for ðx1; x2Þ ¼ ð50; 50Þ, for time t 2 ½180; 200�. The red line represents

uðx1; x2; tÞ for ðx1; x2Þ ¼ ð50; 100Þ, for time t 2 ½180; 200�. Finally, the blue line represents
R
X uðx; tÞdx,

for time t 2 ½180; 200�, which is zero as predicted by the theory. It is obtained by choosing the same initial
conditions as in Fig. 5. This illustrates an asymptotic non homogeneous space behavior. For each x 2 X
the trajectory evolves asymptotically around limit cycles of same period, the patterns observed result from
a phase shift. (Color figure online)

Fig. 7 This figure shows the asymptotic evolution of a solution of (2). It represents uðx1; x2; tÞ for time
t ¼ 190. It is obtained by operating two times the procedure described in Fig. 5. We obtain sixteen spirals.
However, we have to notice that in this case, because of our discretization, we don’t have a perfect
symmetry for initial conditions. Indeed, some domains are slightly larger than other, for example the left-
down corner in which we take a constant initial contain 13 � 13 (because 13 ¼ b100=8c þ 1) points while
the opposite region where we choose symmetric value contains 12 � 12 points. Therefore, the symmetry
is not perfectly verified
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Fig. 8 This figure shows the asymptotic evolution of a solution of (2) at some space points. Indeed, the
green line represents uðx1; x2; tÞ for ðx1; x2Þ ¼ ð50; 50Þ, for time t 2 ½180; 200�. The red line represents

uðx1; x2; tÞ for ðx1; x2Þ ¼ ð50; 100Þ, for time t 2 ½180; 200�. Finally, the blue line represents
R
X uðx; tÞdx,

for time t 2 ½180; 200�. It is obtained by choosing the same initial conditions as in Fig. 7. This illustrates
an asymptotic non homogeneous space behavior. For each x 2 X, the trajectory evolves asymptotically
around limit cycles of same period, the patterns observed result from a phase shift. Here the value ofR
X uðx; tÞdx is non zero, but rather periodic. Here the theoretical results of the previous section do not

apply as our initial solutions do not satisfy the symmetric conditions. (Color figure online)

Fig. 9 This figure shows the asymptotic evolution of a solution of (2). More precisely, it represents
uðx1; x2; tÞ for time t ¼ 190. It is obtained by choosing for all x 2 X , ðu0ðxÞ; v0ðxÞÞ as a realization of an
uniform stochastic variable on ½�1; 1�. This illustrates an asymptotic non homogeneous space behavior
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Fig. 10 This figure shows the asymptotic evolution of a solution of (2) at some space points. Indeed, the
green line represents uðx1; x2; tÞ for ðx1; x2Þ ¼ ð50; 50Þ, for time t 2 ½180; 200�. The red line represents

uðx1; x2; tÞ for ðx1; x2Þ ¼ ð50; 100Þ, for time t 2 ½180; 200�. Finally, the blue line represents
R
X uðx; tÞdx,

for time t 2 ½180; 200�. As previously the figure is obtained by choosing for all x 2 X , ðu0ðxÞ; v0ðxÞÞ as a
realization of an uniform stochastic variable on ½�1; 1�. This illustrates an asymptotic non homogeneous
space behavior. For each x 2 X the trajectory evolves asymptotically around the same limit cycle, the

patterns observed result from a phase shift. We can see that the value of
R
X uðx; tÞdx oscillate between

approximatively �0:3 and 0.3 as it was the case for the solution with sixteen spirals. In this case also the
zero-integral condition with symmetry is not verified for initial conditions. (Color figure online)

Fig. 11 This figure shows the asymptotic evolution of a solution of (2). More precisely, it represents
uðx1; x2; tÞ for time t ¼ 190. It is obtained by choosing for all x 2 X , ðu0ðxÞ; v0ðxÞÞ as a realization of a

stochastic variable following the law Nð0; 1Þ. This illustrates an asymptotic non homogeneous space
behavior as it was the case for stochastic uniform initial conditions
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